Calculations of the dissociation constant for the tetrakis-(diethyldithiocarbamato)-uranate(VI) ion were made according to the method of Foley and Anderson, ${ }^{12}$ which utilizes solution pairs having the same concentration of the complex but differing in concentrations of the free complex forming ions. Such data were available directly from the Yoe and Jones type of plot, the continuous variation curves, or appropriate dilutions of these solutions in $1 M$ sodium perchlorate. Calculated values for three solution pairs gave six values ranging from $1.5 \times$ 10^{-18} to 6.9×10^{-18} at 25° for the equilibrium defined by the equation

$$
K=\frac{\left[\mathrm{UO}_{2}^{++}\right]\left[\mathrm{X}^{-}\right]}{\left[\mathrm{UO}_{2} \mathrm{X}_{4}^{-2}\right]}
$$

where X is diethyldithiocarbamate. The free energy of formation of the complex as calculated from the values of K is about 23 to $25 \mathrm{kcal} . /$ mole. The values for the dissociation constants are at best approximations. The hydrolysis of the uranyl ion, which is appreciable at pH values above 3 , and the hydrolysis of the dithio acid salt are both neglected as is also equilibrium with other complexes. In the region of low $p \mathrm{H}$, where hydrolysis of uranyl ion does not occur, the dithio acids are decomposed thus precluding any measurements.

The spectrum of the ethylxanthate complex was similar to that of the dithiocarbamate complex except that the maximum occurred in the vicinity of $360 \mathrm{~m} \mu$ and then rose very steeply as the wave
(12) R. T. Foley and R. C. Anderson, This Journal, 71, 909 (1949).
length decreased beyond $340 \mathrm{~m} \mu$. The complex absorbed much more strongly in ethanol than in water, indicating considerable dissociation in the latter solvent. For this reason the continuous variation curves were run in ethanol. Plotting according to the method of Yoe and Jones gave values for the extinction coefficient in ethanol of 2.5×10^{3} at $345 \mathrm{~m} \mu$ and 2.2×10^{3} at $360 \mathrm{~m} \mu$. Similar calculations made for solutions of the solid in alcohol give the values 2.2×10^{3} at $345 \mathrm{~m} \mu$ and 1.9×10^{3} at $360 \mathrm{~m} \mu$. The insolubility of the solid complex in non-polar solvents limits the value of the spectral data insofar as obtaining information about the structure of the solid is concerned. The existence of $\mathrm{UO}_{2} \mathrm{X}_{2}$ in solutions of the solid in ethanol suggests that it may be a double salt of the type $\mathrm{KX} \cdot \mathrm{UO}_{2} \mathrm{X}_{2}$, where X is the ethylxanthate group. The data in no way preclude the possibility of the existence of tris- or tetrakis- complexes. No definite conclusions concerning the structure of the solid appear to be justified, on the basis of these data.

Acknowledgments.-The author wishes to thank Dr. Robert B. Booth of the American Cyanamid Company for supplying the various xanthates and for his suggestions concerning their purification. I should also like to thank Dr. J. S. Johnson of ORNL for his assistance in the use of the Cary spectrophotometer. Also, I want to thank Dr. C. F. Coleman of ORNL for his comments on the manuscript.
College Station, Texas
[Contribution from U.S. Naval Ordnance Test Station]

Photolysis of Acetone $-d_{6}$ in the Presence of n-Butane and of n-Butane-2,2,3,3- d_{4}. A Study of the Abstraction of Primary and Secondary Hydrogen by Methyl Radicals

By James R. McNesby and Alvin S. Gordon
Received February 20, 1956

Abstract

Mixtures of n-butane-2,2,3,3- d_{4} and acetone- d_{6} and of n-butane and acetone- d_{6} were irradiated with a medium pressure mercury arc. From the analysis of the methanes produced the activation energies for the following reactions were deduced: $\mathrm{CD}_{3}+\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{CH}_{3} \rightarrow \mathrm{CD}_{3} \mathrm{H}+\mathrm{CH}_{2} \mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{CH}_{3}, E=11.4 \mathrm{kcal}$. $\mathrm{CD}_{3}+\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{CH}_{3} \rightarrow \mathrm{CD}_{4}+\mathrm{CH}_{3} \mathrm{CDCD}_{2}-$ $\mathrm{CH}_{3}, E=11.4 \mathrm{kcal}$.; $\mathrm{CD}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \rightarrow \mathrm{CD}_{3} \mathrm{H}+\mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{CH}_{3}, E=9.3 \mathrm{kcal}$. In the system acetone- $d_{6}-$ butane- d_{4}, it was found that H is abstracted by CH_{3} and CD_{3} at about the same specific rate. The pre-exponential factors in the Arrhenius equations for abstraction of primary and secondary hydrogen from n-butane are in the ratio 1.5 compared with the statistical ratio of 1.5 . In n-butane- d_{4} the ratio of pre-exponential factors for abstraction of primary hydrogen and secondary deuterium is 0.92 compared with a statistical ratio of $1 . \overline{5}$.

Introduction

The comparison of the relative rates of abstraction of D from acetone- d_{6} and H from hydrocarbons by the CD_{3} radical has proved a valuable tool for precise measurement of the activation energies of such metathetical reactions. Measurements made upon hydrocarbons containing more than one kind of hydrogen, e.g., butane, cannot be interpreted unambiguously. For this reason we have prepared practically pure $\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{CH}_{3}$ by the photolysis of α, α^{\prime}-diethyl ketone- $d_{4}{ }^{1}$ and studied the photolysis of acetone- d_{6} in its presence.
(1) J. R. McNesby, C. M. Drew and Alvin S. Gordon, J. Phys. Chem., 59, 988 (1955).

Results and Discussion

1. Acetone- d_{6} and n-Butane-2,2,3,3- d_{4}. - Mixtures of acetone- d_{6} and butane- d_{4} were photolyzed in the temperature range $356-450^{\circ}$, employing a previously described technique. ${ }^{2}$ The advantage of working in this temperature range is that the secondary butyl radical formed upon abstraction of D from butane $-d_{4}$ is thermally unstable and decomposes to give propylene and a light methyl radical. It has therefore been possible to compare the relative rates of abstraction of H and D by the CH_{3} radical, as well as by the CD_{3} radical, in the
(2) J. R. McNesby and Alvin S. Gordon, This Journal, 76, 4196 (1954).
same system. The reactions of present interest in this system are

$$
\begin{gather*}
\mathrm{CD}_{3} \mathrm{COCD}_{3} \longrightarrow 2 \mathrm{CD}_{3}+\mathrm{CO} \\
\mathrm{CD}_{3}+\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{CH}_{3} \longrightarrow \mathrm{CD}_{4}+\mathrm{CH}_{3} \mathrm{CDCD}_{2} \mathrm{CH}_{3} \tag{2}\\
\mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{CH}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{D}+\mathrm{CH}_{3} \mathrm{CDCD}_{2} \mathrm{CH}_{3} \tag{2a}\\
\mathrm{CH}_{3} \tag{3}\\
\mathrm{CD}_{3}+\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{CH}_{3} \longrightarrow \mathrm{CD}_{3} \mathrm{H}+\mathrm{CH}_{2} \mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{CH}_{3} \tag{3a}\\
\mathrm{CH}_{3} \tag{4}\\
\mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{CH}_{3} \longrightarrow \mathrm{CH}_{4}+\mathrm{CH}_{2} \mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{CH}_{3} \\
\mathrm{CD}_{3}+\mathrm{CD}_{3} \mathrm{COCD}_{3} \longrightarrow \mathrm{CD}_{4}+\mathrm{CD}_{3} \mathrm{COCDD}_{2} \tag{5}\\
\mathrm{CH}_{3}+\mathrm{CD}_{3} \mathrm{COCD}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{D}+\mathrm{CD}_{2} \mathrm{COCD}_{3} \tag{6}\\
\mathrm{CH}_{3} \mathrm{CDCD}_{2} \mathrm{CH}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{CD}_{2}+\mathrm{CH}_{3} \\
\mathrm{CH}_{2} \mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{CH}_{3} \longrightarrow \mathrm{CH}_{2}=\mathrm{CD}_{2}+\mathrm{CD}_{2} \mathrm{CH}_{3}
\end{gather*}
$$

The rates of formation of the various methanes are
$R_{\mathrm{CD}_{4}}=k_{2}\left(\mathrm{CD}_{3}\right)\left(\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{CH}_{3}\right)+k_{4}\left(\mathrm{CD}_{3}\right)\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$

$$
\begin{gather*}
R_{\mathrm{CD}_{3} \mathrm{H}}=k_{3}\left(\mathrm{CD}_{3}\right)\left(\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{CH}_{3}\right) \tag{1}\\
R_{\mathrm{CH} 3 \mathrm{D}}=\begin{array}{l}
k_{2 \mathrm{~s}}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{CH}_{3}\right)+k_{4 \mathrm{~B}}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CD}_{3}-\right. \\
\left.\mathrm{COCD}_{3}\right) \\
R_{\mathrm{CE}_{4}}=k_{3 \mathrm{~B}}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{CH}_{3}\right)
\end{array},(4)
\end{gather*}
$$

Since the reactions have been carried out only to about 1% completion, it is possible to write

$$
\begin{equation*}
\frac{R_{\mathrm{CD}_{4}}}{R_{\mathrm{CD} 3 \mathrm{~B}}}=\frac{\left(\mathrm{CD}_{4}\right)}{\left(\mathrm{CD}_{3} \mathrm{H}\right)}=\frac{k_{4} A}{k_{3} B}+\frac{k_{2}}{k_{3}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{R_{\mathrm{CH}_{3} \mathrm{D}}}{R_{\mathrm{CH}_{4}}}=\frac{\left(\mathrm{CH}_{3} \mathrm{D}\right)}{\left(\mathrm{CH}_{4}\right)}=\frac{k_{48} A}{k_{3 \mathrm{~B}} B}+\frac{k_{2 \mathrm{a}}}{k_{3 \mathrm{a}}} \tag{6}
\end{equation*}
$$

where $A=$ (acetone- d_{6}) and $B=$ (n-butane-2,2,3,-$3-d_{4}$). It is evident from equation 5 that the ratio $\mathrm{CD}_{4} / \mathrm{CD}_{3} \mathrm{H}$, when plotted against the acetone$d_{6} /$ butane $-d_{4}$ ratio, should give a straight line whose slope is k_{4} / k_{3} and whose intercept on the $\mathrm{CD}_{4} / \mathrm{CD}_{3} \mathrm{H}$ axis is k_{2} / k_{3}. Three master mixtures of acetone-$d_{6}-n$-butane-2,2,3,3- d_{4} were used. Each mixture was photolyzed with a medium pressure mercury arc at three temperatures and the methane fractions analyzed with a high resolution mass spectrometer. The results are shown in Table I, and the plots of $\mathrm{CD}_{4} / \mathrm{CD}_{3} \mathrm{H} v s . A / B$ are shown in Fig. 1.

Four minor sources of $\mathrm{CD}_{3} \mathrm{H}$ are present because the reactants are incompletely deuterated.

$$
\begin{align*}
\mathrm{CD}_{2} \mathrm{H}+\mathrm{CD}_{3} \mathrm{COCD}_{3} & \longrightarrow \mathrm{CD}_{3} \mathrm{H}+\mathrm{CD}_{2} \mathrm{COCD}_{3} \tag{7}\\
\mathrm{CD}_{3}+\mathrm{CD}_{2} \mathrm{HCOCD}_{3} & \longrightarrow \mathrm{CD}_{3} \mathrm{H}+\mathrm{CD}_{2} \mathrm{COCD}_{3} \tag{8}\\
\mathrm{CD}_{3}+\mathrm{CH}_{3} \mathrm{CDHCD}_{2} \mathrm{CH}_{3} & \longrightarrow \mathrm{CD}_{3} \mathrm{H}+\mathrm{CH}_{3} \mathrm{CDCD}_{2} \mathrm{CH}_{3}
\end{align*}
$$

$\mathrm{CD}_{2} \mathrm{H}+\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{CH}_{3} \longrightarrow \mathrm{CD}_{3} \mathrm{H}+\mathrm{CH}_{3} \mathrm{CDCD}_{2} \mathrm{CH}_{3}$
Acetone- d_{6} alone gives $\mathrm{CD}_{3} \mathrm{H} / \mathrm{CD}_{4}=4 \%$. From the analysis of the deuterated acetone, it is calculated that 1.3% of the radicals are $\mathrm{CD}_{2} \mathrm{H}$, so that reaction (8) must account for the remaining 2.7% of $\mathrm{CD}_{3} \mathrm{H}$ produced from the photolysis of the ace-tone- d_{6} alone.
Since Fig. 1 indicates that k_{2} / k_{3} is about unity and since practically all of the $\mathrm{CD}_{3} \mathrm{H}$ in the mixture came from butane- d_{4}, the amount of CD_{4} coming from butane- d_{4} was equal to the total $\mathrm{CD}_{3} \mathrm{H}$, with the remaining CD_{4} coming from acetone- d_{6}. Four
per cent. of the CD_{4} from acetone- d_{6} was subtracted from the total to correct for reactions (7) and (8). Since 2.7% of the CD_{4} appears as $\mathrm{CD}_{3} \mathrm{H}$ from reaction (8) in the case of acetone- d_{6} alone, it was assumed that about the same percentage of the CD_{4} formed from the butane- d_{4} appeared as $\mathrm{CD}_{3} \mathrm{H}$ from reaction (9). As previously noted, 1.3% of the radicals produced from acetone- d_{6} are $\mathrm{CD}_{2} \mathrm{H}$, and they abstract H and D from butane- d_{4} with equal facility. Thus reaction (10) results in $\mathrm{CD}_{3} \mathrm{H}$ to the extent of 1.3% of the CD_{4} from butane- d_{4}. The corrections for reactions (9) and (10) total 4% of the CD_{4} arising from the butane- d_{4}.

Fig. 1.-Photolysis of acetone- d_{6} in the presence of butane- d_{4}.
The corrections on CH_{4} were made on a similar basis, assuming that the total extraneous CH_{4} arises from

$$
\begin{gather*}
\mathrm{CH}_{3}+\mathrm{CD}_{2} \mathrm{HCOCD}_{3} \rightarrow \mathrm{CH}_{4}+\mathrm{CD}_{2} \mathrm{COCD}_{3} \tag{11}\\
\mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{CDHCD}_{2} \mathrm{CH}_{3} \longrightarrow \mathrm{CH}_{4}+\mathrm{CH}_{3} \mathrm{CDCD}_{2} \mathrm{CH}_{3} \tag{12}
\end{gather*}
$$

Figures in parentheses in Table I are quite inaccurate due to the small amounts of $\mathrm{CH}_{3} \mathrm{D}$ and CH_{4} in the particular experiments indicated. High resolution mass spectrometry was employed to distinguish mass 16,17 and 18 peaks due to water from those due to methane fragments. The $\mathrm{CH}_{3} \mathrm{D} / \mathrm{CH}_{4}$ ratios are not significantly different from the corresponding $\mathrm{CD}_{4} / \mathrm{CD}_{3} \mathrm{H}$ ratios. The corrected data indicate that CH_{3} abstracts H and D from the system with the same activation energy differences as does CD_{3}.

It is very difficult to see a trend in k_{2} / k_{3} with temperature. From the data it appears that E_{3} $E_{4}=0.1 \pm 0.1 \mathrm{kcal}$. Since it has already been es-

Table I

Photolysis of Acetone- d_{6} In the Presence of n-Butane $2,2,3,3-d_{4}{ }^{\text {a }}$									
b, min.	3	4	3	2	3	1	1	1.5	1
$T,{ }^{\circ} \mathrm{C}$.	356	356	356	401	401	401	450	450	450
A / B	0.84	1.65	2.45	0.84	1.65	2.45	0.84	1.65	2.45
$\mathrm{CD}_{3} \mathrm{H}$	24.4	46.8	26.5	26.3	50.3	13.6	35.9	44.2	26.5
CD_{4}	48.7	138.8	99.3	52.4	146.1	50.8	69.9	124.3	96.3
CH_{4}	9.4	12.1	5.0	21.8	23.9	6.0	48.9	26.2	12.9
$\mathrm{CH}_{3} \mathrm{D}$	20.2	39.5	20.1	43.0	71.7	19.7	97.7	76.9	49.9
$\mathrm{CD}_{4} / \mathrm{CD}_{3} \mathrm{H}$	2.00	2.99	3,74	1.99	2.91	3.74	1.95	2.62	3.63
$\mathrm{CH}_{3} \mathrm{D} / \mathrm{CH}_{4}$	(2.1)	(3.3)	(4.0)	1.97	3.00	(3.3)	2.00	2.94	(3.9)
$\left(\mathrm{CD}_{4}\right)_{\mathrm{A}}$	23.3	90.9	71.6	25.0	93.6	36.6	32.5	78.1	68.6
$\left(\mathrm{CH}_{3} \mathrm{D}\right)_{\mathrm{A}}$	10.7	27.2	15.1	20.9	47.5	13.6	48.1	50.5	36.8
$\left(\mathrm{CD}_{4}\right)_{B}$	25.4	48.9	27.7	27.4	52.5	14.2	37.4	46.2	27.7
$\left(\mathrm{CH}_{3} \mathrm{D}\right)_{\mathrm{B}}$	9.5	12.3	5.0	22.1	24.2	6.1	49.6	26.6	13.1
$\left(\mathrm{CH}_{4}\right)_{\text {B }}$	9.4	12.1	5.0	21.8	23.9	6.0	48.9	26.2	12.9
$\left(\mathrm{CD}_{3} \mathrm{H}\right)_{\mathrm{B}}$	25.0	48.1	27.3	27.0	51.7	13.9	36.9	45.5	27.3
$\begin{aligned} & \left(\mathrm{CD}_{3} / \mathrm{CH}_{3}\right)= \\ & \quad\left(\mathrm{CD}_{4}\right)_{\mathrm{A}} /\left(\mathrm{CH}_{3} \mathrm{D}\right)_{\mathrm{A}} \end{aligned}$	2.18	3.34	4.74	1.20	1.97	2.69	0.68	1.55	1.86
$\left(\mathrm{CD}_{4} / \mathrm{CH}_{3} \mathrm{D}\right)_{\mathrm{B}}$	2.67	3.98	5.5	1.24	2.17	2.33	0.75	1.74	2.11
$k_{2} / k_{2 \mathrm{a}}$	(1.2)	(1.2)	(1.2)	1.0	1.1	(0.9)	1.1	1.1	(1.1)
k_{2} / k_{3}	1.08			1.06			1.07		
k_{4} / k_{3}	1.08			1.10			1.04		

${ }^{a} \mathrm{CD}_{3} \mathrm{H}$ and CH_{4} have been corrected as indicated in the text. $A / B=$ relative molar concentrations of acetone- d_{6} and butane- $d_{4} . \quad\left(\mathrm{CD}_{4}\right)_{A}=\mathrm{CD}_{4}$ formed from acetone- $d_{6} . \quad\left(\mathrm{CD}_{4}\right)_{B}=\mathrm{CD}_{4}$ formed from butane- d_{4}. Numbers are mass spectrometer peak heights. The total pressure was about 35 mm . for each run.
tablished that $E_{4}=11.3 \mathrm{kcal} .,^{3-5}$ it follows that $E_{3}=11.4 \mathrm{kcal}$. and $E_{2}=11.4 \mathrm{kcal}$.

From two independent studies, ${ }^{6,7}$ the energy of activation $E_{13}=11.4 \pm 0.2$.

$$
\begin{equation*}
\mathrm{CD}_{3}+\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{CD}_{3} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{5} \tag{13}
\end{equation*}
$$

Thus the activation energy for the abstraction of primary H is, within a small experimental error, independent of whether the H is abstracted from ethane or butane- d_{4}.

Table I includes the amounts of the various methanes arising from each of the abstraction reactions. From these results the rate of reaction of CD_{3} and CH_{3} with the D atoms of butane- d_{4} may be compared.

$$
\begin{equation*}
\frac{R_{\left(\mathrm{CD}_{4}\right) \mathrm{A}}}{R_{\left(\mathrm{CH}_{3} \mathrm{D}\right) \mathrm{A}}}=\frac{\left(\mathrm{CD}_{4}\right)_{\mathrm{A}}}{\left(\mathrm{CH}_{3} \mathrm{D}\right)_{\mathrm{A}}}=\frac{k_{4} A\left(\mathrm{CD}_{3}\right)}{K_{4 \mathrm{~A}} A\left(\mathrm{CH}_{3}\right.} \tag{7}
\end{equation*}
$$

It has previously been shown that $k_{4}=k_{4 \mathrm{a} .}{ }^{4}$ It follows that

$$
\begin{gather*}
\mathrm{CD}_{3} / \mathrm{CH}_{3}=\left(\mathrm{CD}_{4}\right)_{\mathrm{A}} /\left(\mathrm{CH}_{3} \mathrm{D}\right)_{\mathrm{A}} \tag{8}\\
\frac{\left(\mathrm{CD}_{4}\right)_{\mathrm{B}}}{\left(\mathrm{CH}_{3} \mathrm{D}\right)_{\mathrm{B}}}=\frac{k_{2}\left(\mathrm{CD}_{3}\right)(\mathrm{B})}{k_{22}\left(\mathrm{CH}_{3}\right)(\mathrm{B})}=\frac{k_{2}\left(\mathrm{CD}_{4}\right)_{\mathrm{A}}}{k_{2 \mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{D}\right)_{\mathrm{A}}} \tag{9}
\end{gather*}
$$

$$
k_{2} / k_{2 \mathrm{a}}=\left[\left(\mathrm{CD}_{4}\right)_{\mathrm{B}}\left(\mathrm{CH}_{3} \mathrm{D}\right)_{\mathrm{B}}\right] /\left[\left(\mathrm{CD}_{4}\right)_{\mathrm{A}} /\left(\mathrm{CH}_{3} \mathrm{D}\right)_{\mathrm{A}}\right]
$$

The values of $k_{2} / k_{2 \mathrm{a}}$ were calculated in this way. It is doubtful whether the ratio is significantly greater than 1.0 , but it is certainly not less than 1.0 . It must be concluded that CH_{3} and CD_{3} abstract D from butane- d_{4} at about equal rates over the temperature range studied.
2. Acetone $-d_{6}$ and n-Butane.-A mixture of acetone- d_{6} and n-butane was made up in the ratio butane/acetone- $d_{6}=2.04$. This mixture was photolyzed from $250-450^{\circ}$ and the product meth-
(3) J. R. McNesby, T. W. Davis and A. S. Gordon, This Journal, 76, 823 (1954).
(4) J. R. McNesby and A. S. Gordon, ibid., 76, 1416 (1954).
(5) M. H. J. Wijnen, J. Chem. Phys., 22, 1075 (1954).
(6) J. R. MeNesby and A. S. Gordon, This Journal, 77, 4719 (1955).
(7) M. H. J. Wijnen, J. Chem. Phys., 23, 1357 (1955).
anes analyzed as above. The literature cracking pattern of $\mathrm{CD}_{3} \mathrm{H}$ includes 51.1% of the parent at mass 17. In the 250° experiments where the secbutyl radical is quite stable, $\mathrm{CD}_{3} \mathrm{H}$ and CD_{4} are the important methanes. Negative residuals at mass 17 were encountered under these conditions. If 49.5% is used rather than 51.1% for the $\mathrm{CD}_{3} \mathrm{H}$ cracking pattern at mass 17 , no negative residuals were encountered and values of the $\mathrm{CH}_{4} / \mathrm{CH}_{3} \mathrm{D}$ ratio were commensurate with the $\mathrm{CD}_{3} \mathrm{H} / \mathrm{CD}_{4}$ ratios. In the work with acetone- d_{6} and butane- d_{4} such an error in the cracking pattern of $\mathrm{CD}_{3} \mathrm{H}$ would be negligible, since relatively large amounts of $\mathrm{CH}_{3} \mathrm{D}$ were generated during the reaction.

In the acetone- $d_{6}-n$-butane system the methane forming reactions are

The CH_{3} radicals are formed in

$$
\begin{equation*}
\mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{CH}_{3} \longrightarrow \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2} \tag{19}
\end{equation*}
$$

In the initial stages of reaction

$$
\mathrm{CD}_{3} \mathrm{H} / \mathrm{CD}_{4}=\left(k_{14} B\right) /\left(k_{4} A\right)+\left(k_{15} B\right) /\left(k_{4} A\right)
$$

From the data in Table I, it is a sufficiently accurate approximation to write $k_{14} / k_{4}=0.93$ on the assumption that the abstraction of primary H is unaffected by the mass of the hydrogen atoms in the secondary positions. Since $B / A=2.04$

$$
k_{13} / k_{4}=\frac{\mathrm{CD}_{3} \mathrm{H} / \mathrm{CD}_{4}-1.90}{2.04}
$$

Table II
Photolysis of Acetone- d_{6} in the Presence of n-Butane

t, min.	$T,{ }^{\circ} \mathrm{C}$.	CD_{4}	$\mathrm{CD}_{3} \mathrm{H}$	$\mathrm{CD}_{8} \mathrm{H}_{2}$	$\mathrm{CH}_{8} \mathrm{D}$	CH_{4}	$\mathrm{CD}_{2} \mathrm{Cor}$.	$\frac{\mathrm{CH}_{4}}{\mathrm{CH}_{8} \mathrm{D}}$	k_{15} / k_{4}
5	250	17.6	185.2	(0.0)	(0.4)	(5)	10.48	\ldots	4.21
10	250	33.1	351.7	0.7	(1.5)	(10)	10.59	\ldots	4.26
4	303.5	13.7	127.1	0.3	10.9	104.3	9.24	9.57	3.60
10	303.5	43.0	391.6	1.2	32.6	249.1	9.07	9.17	3.51
3	355	13.2	108.5	0.4	29.7	256.3	8.18	8.63	3.08
6	355	29.5	240.3	3.2	61.7	530.6	8.11	8.60	3.04
3	397	12.6	96.2	0.9	50.3	392.0	7.60	7.53	2.79
6	397	37.1	279.9	6.1	132.7	1051.9	7.50	7.93	2.75
4	449	28.0	199.5	5.0	131.1	969.0	7.09	7.39	2.54

The pertinent data are given in Table II. From the slope of the Arrhenius plot for $k_{15} / k_{4}, E_{4}-E_{15}$ is calculated to be 2.0 kcal . Since E_{4} is $11.3 \mathrm{kcal} .,{ }^{5} 8$ it follows that $E_{15}=9.3 \mathrm{kcal}$.
As in the acetone- $d_{6}-n$-butane- $2,2,3,3-d_{4}$ mixtures, these data indicate that CH_{3} abstracts H and D with the same activation energy difference as does CD_{3}. It is of interest to note that the difference in energy of activation for the abstraction of secondary D and H by CD_{3} from butane is 2.1 kcal ., a value in excess of the zero point energy difference of H_{2} and D_{2}. Some previous work ${ }^{6,8}$ also indicates that zero point energy differences are not sufficient to account for the difference in rate of $a b-$ straction of D and H by methyl radicals.

It is of interest to calculate the ratio of preëxponential factors in the Arrhenius equations, A_{3} / A_{15}, corresponding to the abstraction of primary and secondary hydrogen. In this discussion we assume that $A_{3}=A_{14}$.

As may be seen in Fig. $1, k_{2} / k_{4}$ varies very little with temperature. From this observation A_{3} / A_{4} may be calculated as 0.93 .

From Fig. $2, A_{4} / A_{15}=1.61$, so that

$$
\frac{A_{4}}{A_{16}} \times \frac{A_{3}}{A_{4}}=\frac{A_{3}}{A_{15}}=1.50
$$

(8) J. R. McNesby and A. S. Gordon, This Journal, 76, 1416 (1954).

This is the ratio of the number of primary hydrogen atoms to the number of secondary hydrogen atoms, so that the entropy of activation per hydrogen atom of the attack on primary hydrogen is the same as for the attack on secondary hydrogen.

We may also compare A_{3} / A_{2}, the ratio for the abstraction of primary hydrogen to the abstraction of secondary deuterium in butane- d_{4}.

From the intercepts in Fig. 1, $k_{3} / k_{2}=0.93$, independent of temperature. Thus $A_{3} / A_{2}=0.93$. This ratio is far from the ratio of the number of primary hydrogen atoms to secondary deuterium atoms in the butane- d_{4}. We can offer no explanation for this discrepancy at the present time. Since $E_{14}=$ 11.4 kcal . and $E_{15}=9.3 \mathrm{kcal}$., it is concluded that the difference in activation energy for abstraction by CD_{3} of primary and secondary H is 2.1 kcal . Considering the numerous approximations that were necessary in the work of Ailen ${ }^{9}$ at a single temperature, his estimate of 2.1 kcal . for the difference in abstraction activation energies of primary and secondary H from propane is remarkably close to our precisely measured value for the case of butane.

Acknowledgment.-The authors wish to acknowledge the assistance of Mr. Andreas V. Jensen and Mrs. Helen R. Young in mass spectrometer analysis.
(9) A. O. Allen, ibid, 63, 708 (1941).

China Lake, Calif.
[Contribution from the Department of Chemistry and the Purdue Research Foundation, Purdue University]

An Electron Diffraction Investigation of the Molecular Structure of 1,1,1-Trifluoroethane ${ }^{1}$

By James L. Brandt and R. L. Livingston
Received February 20, 1956

The interatomic distances in methylfluoroform have been determined by electron diffraction using the visual correlation procedure. Sectored electron diffraction photographs were used in the interpretation of some of the features. The following results were obtained: $\mathrm{C}-\mathrm{F}=1.33 \pm 0.02 \AA$., $\mathrm{C}-\mathrm{C}=1.52 \pm 0.04 \AA$., and $\angle \mathrm{CCF}=111.5^{\circ} \pm 1.5^{\circ}$.

Two previous electron diffraction investigations ${ }^{2}$ of the structure of methylfluoroform gave the following conflicting results: $\mathrm{C}-\mathrm{C}=1.45 \pm$ $0.04 \AA$. as compared to $1.53 \pm 0.04 \AA ., \mathrm{C}-\mathrm{F}=$ $1.33 \pm 0.03 \AA$. compared to $\mathrm{C}-\mathrm{F}=1.36 \pm 0.02 \AA$.
(1) From the Ph.D. thesis of James L. Brandt, Purdue Research Foundation Fellow in Chemistry, 1951-1952.
(2) R. W. Allen and L. F. Sutton, Acta Cryst., 3, 46 (1950).
and $\angle \mathrm{FCF}=108.5 \pm 2^{\circ}$ against $107 \pm 3^{\circ}$. Edgell and Roberts, ${ }^{3}$ in a microwave spectroscopic study, obtained a moment of inertia perpendicular to the threefold axis of $161.80 \pm 0.07 \times 10^{-40} \mathrm{~g}$. $\mathrm{cm} .{ }^{2}$. They showed that this moment of inertia was compatible with the following parameters: $\mathrm{C}-\mathrm{C}=1.54 \AA ., \mathrm{C}-\mathrm{F}=1.33 \AA$., $\mathrm{C}-\mathrm{H}=1.043 \AA$. ,
(3) W. F. Edgell and A. Roberts, J. Chem. Phys., 16, 1002 (1948)

